omgpham…
25Mar/173

Velocity Stacks & Airbox Prototyping.

 

This is going to be a big photo dump of my latest adventures into 3D printing, both for prototyping and hopefully end usage. I purchased myself a 3D printer, Wanhao Duplicator i3, and I'll do a separate post for that soon. For now let's talk about my experiences with the intake parts I'm prototyping 🙂

I have no real knowledge in both 3D printing/modelling and engine intake theory, I'm just learning as I go, so there will be mistakes here and there. And therefore, not entirely sure if these parts/designs will make any measurable performance gains, but it's all fun anyway!

In my last post, I had just commissioned some prints of velocity stacks. Well I did some redesigns, and they can now be found on thingiverse.com, again it's still all a work in progress and I'm not expert in the design theory.

The velocity stacks are 105mm tall and designed for Silvertop AE101 throttle bodies.

20170305_08045820170305_080450
screen02screen01

Next up was designing an airbox for the ITBs and 105mm tall stacks, I pretty much modelled it using the same external dimensions as my Pipercross filter. I did this because I know for sure that it would clear all the brake and clutch parts in the engine bay and I also wanted the ability to easily change from filter to airbox. I can and will make a better design once I have this design fitted and tested.

For the Pipercross filter and this airbox to clear the stacks, a new mounting plate needed to be made. So I chose to print out a spacer that would be sandwiched between two laser cut plates, you can see it in the previous screenshot.

screen06

Below is my ideal design, will work on that soon.

AY0F8922

The printed spacer for the filter mounting plate, had to be printed in multiple pieces due to the limited build volume of my printer (200mm x 200mm x 180mm).

20170317_124642

Before doing the actual prototype print I decided to use some rubbish filament for a test print without support material, just to see how far it could go. It failed pretty quick when it got to the dome part, it recovered slightly towards the end though.

20170321_07514620170321_090523
20170321_09583820170321_101717

Here you can see the rear section of the airbox being printed, tried to minimise the usage of plastic and support material. This was printed at mostly 200micron layer height and the curved sections were printed at 100micron layer height, varying the layer height like this helps reduce print time as well as reduce support material for the sections with overhang.

20170323_07102020170323_124734
20170323_22301220170323_223156

Mid section being printed, by far the easiest part. Only needed support material for the mount flanges, this was printed at 280micron layer height.

20170324_19212820170324_200417
20170324_221741

And this is the front section being printed, all printed at 280micron layer height. This part had some design modifications to improve print-ability, also to reduce plastic usage and support material.

20170325_085839(0)20170325_174206

Since this is a prototype for test fitting, sections are glued together using Cyanoacrylate. Final part will either be epoxied or plastic welded together, not sure yet. Or maybe just use the print as a mold for carbon fibre?

20170324_22590820170324_225955
20170324_23000820170324_225744

It's amazing seeing this all come together as one piece, nearly 500mm total length. So happy!

20170325_181614
20170325_18155620170325_181551
20170325_181543

Photo trying to show the internal clearances with stacks installed, minimum distance to walls is 25mm.

20170325_18194520170325_181923

Some lessons I learned during this entire print are that overhangs causes prints to look like crap. So I've made the following design changes to help reduce overhangs.

  1. I added a chamfer on the inside surface to reduce the overhang angles under the "dome", this allows me to print with minimal support material, and the chamfer being only 20% solid means I use less plastic overall.
  2. The highlighted flat sections at either ends of the flange remove the overhangs and allows my printer to simply bridge that section, which my printer does very well. This makes the print look cleaner and also reduce support material.
  3. I found that printing holes on a vertical plane produces nasty overhangs and causes imperfections in and around the hole, so I opted to print only dimples instead of a through-hole. This improves the finish and I can just simply drill the holes post print anyway.

screen03screen04
screen05

 

I also modelled this catch can and printed it out for test fitting. Unfortunately, the filament ran out before it completed printing. Was still able to test fit though!

20170318_101038
20170318_23140820170318_231413
20170318_234543

22Jul/133

ITB Build – Part 14

Dropped my engine off last week at the Auto Xperts, they did an excellent job and degreed my cams to the recommend specs. Final adjustments will be made on the dyno.

Picked her up this morning and have been on it since than.


After the crank bolt was correctly torqued, I started on assembling the timing cover and ITBs.


Some close-ups of stuff.


Lightened flywheel and clutch going in.

Engine going back in 😀


YES!!!!!!!!!!!!!!!!!!!!

16Sep/120

ITB Build – Part 10

Update time! Head isn't finished yet so I've been doing a few odd jobs here and there.

One thing I did was start on the brake prop valve relocation. It's not necessary but does give me extra space for the velocity stacks, might be able to increase it's length later down the track too. So I picked up some angle aluminium plate for $5 and started cutting that up.


Cost me $5, pretty awesome deal I thought.



Measure twice, cut once. Came out exactly how I wanted, the prop valve will than be mounted just above the brake booster. I'll get someone to make the hard lines when engine is out.


Here is the capacitor used for the COPs install, it's needed because the battery is in the boot and can cause voltage drops when the coils fire. The capacitor helps by storing a reserve of power and eliminates any voltage drop. Well that's what I think it does =P


Terminated wiring for the AFR gauge, I used Deutsch connectors and braided sleeving.


Ordered these velocity stack booties from Outerwears, quality seems good but I'm not 100% sure they will provide enough filtering. So might experiment with some foam as well.

11Sep/120

Car Parts Make Me Wet

^^ True story...

I've been working on a few small things on the car, but haven't completed any of the jobs so won't post up any photos. I have bought some new parts though =)

First up is a new lightened chrome-moly flywheel that weighs 4kg, which is less than half the weigh of the stock one. I actually had a few lightened 1.8L flywheels, but I didn't want to replace my clutch so sourced a 1.6L flywheel instead.


The drill-outs on the outer edge seem a bit weird, but makes sense that any weight on the outer edges would have a greater affect than weight closer to the center.

Next up is my Toda adjustable cam pulleys, these were sourced direct from Japan. They'll be dialed up with my billet camshafts by an engine builder.



The quality is amazing on these, glad I didn't cheap out on this part of the engine.


This is the intake cam pulley, it's slightly different from most other adjustable cam pulleys because it has the three little trigger knobs for the hall effect cam sensor. I believe this type of cam pulley is required for engines from 99 onwards?

The next part was also ordered direct from Japan, it's a KG Works stainless steel tombstone. It comes with the full face plate, hazard/retractor buttons, vent rings, HVAC face plate and gear surround.



 

9Sep/120

Velocity Stack Stickers!

My mate recently had some of these awesome stickers made up, it's perfect for all of us who run ITBs. I've got them on my car now, just gotta wait till the real ITBs are installed haha!

 


Below is Ian's ITB Daihatsu Mira rocking the stickers. Three stickers because 3-cylinder 😀


8Aug/120

Head Job

Warren @ Warren Heath Performance recently received my cylinder head and has started porting work already! Some photo updates are below, make sure to visit his page and check out his work.



YES YES!!!


 

15Jul/120

ITB Build – Part 2

Some more progress today 😀

Had a friend come over to help strip out the interior since my cracked dash and ripped carpet will be getting replaced. Also makes it easier to get out the old wiring harness. Enjoy the madness below, sorry for the lack of photos.


Seats and center console out.


Steering column dropped and dash completely out.


Everything nearly out, just need some more free time to get the wiring harness out.

14Jul/122

ITB Build – Part 1

FINALLY!!!!!!!!!!!!

Started pulling apart my car today, the head is being removed so I can get that ported. The AC, all wiring, intake, strut brace and fuse box will be removed to make way for my custom tucked wiring harness.

I was planning to port it myself but have decided to send it down to Warren Heath Performance down in Melbourne. The head will received an extensive porting job as well as larger oversized valves, stronger valve springs and re-shimmed solid lifters. The camshaft going in will be 280degree duration and 10.5mm lift.

Didn't get too much done today but photos below.


The operating table where most of the work will be done.



Bonnet off, radiator out and headers moved aside.



Valve cover off to remove the head, full port job on the way with massive cams going in.



The AC condenser removed and a pile of parts that won't be going back in.


That's all for today, covered up and put to bed.

8Jul/120

More Parts & No Progress

Blehhh not much progress lately, BUT I have acquired some more bits for the build. Also been talking with a few guys who are also doing the same ITBs and we've found a few more issues with the T3 manifold... The issue is that the TPS is located towards the firewall and hits against the clutch master hard-line. This is not an issue for all the US guys who have the clutch master on the other side of the engine bay (LHD).


So that's the problem... there are possibly two ways to get around this.


So this is a solution that I'm going to test out, it involves taking 12mm off the end and machining the surface flat. So now I can use a banjo fitting that will let me clear the TPS.


The other solution is to use a braided hose like above, not sure if it'll clear the TPS though. Will figure it out when everything else goes into the car.

So when I installed my new KG Works cluster I forgot to mention that my gauge hood also cracked. Was a pain in the ass but I was able to find a brand new genuine replacement :D. Apparently it was the last one in Australia too! Mazda have more on back order I believe.


So it looks amazing! It does't have the shiny finish like my old one but has a more smooth matte look. Will install this later on when I get a new dash to replace my cracked one.

The next part I found is a duct that is used in cars that don't have air-conditioning from factory. Since I'm removing my AC this part is perfect so that I can remove the ENTIRE AC system and still have functional air/heater.


Wasn't able to get a brand new one but Richard at MX-5 Plus was able to hook me up with this used part. Would prefer a new one but this is pretty decent.

24Jun/120

ITB Test Install

My new fuel rail finally arrived, had to replace the M-Tuned rail because it had clearance issues with the fuel rail bracket. And I was able to get myself a B6 cylinder head for free. This allows me to test fit all the parts and I can work on the fuel lines and wiring while my NB6 head is away for porting and cams.

Also did a quick test fit of the ITBs to see if there are any issues that need to be sorted out.